
     The primary goals of landscape-scale mod-
eling are identifying areas of high-risk for 
spread, as well as general patterns of disease 
spread. Another modeling goal is to link the 
spatial structure of wildlife populations and the 
spatial variability in abiotic and biotic attrib-
utes of their environment with disease trans-
mission dynamics.  Large-scale modeling often 
involves averaging over large areas to depict 
and analyze the patterns and spread of a dis-
ease.  An inherent shortcoming of averaging is 
the loss of understanding of some biological 
processes, such as animal movements, on dis-
ease epidemiology. The term landscape epide-
miology illustrates the concept by mapping a 
landscape in terms of spatial risk factors for 
infection and disease prevalence (Hess et al. 
2002). 
 

     Features of the landscape and host that may 
affect disease distribution and transmission can 
be georeferenced and mapped.  In addition to 
spatial variation, many factors vary in a tempo-
ral fashion, such as seasonally or annually.  
Both spatial and temporal data at the landscape 
scale can be useful in making predictions 
based on past conditions, and can be updated 
as conditions change or new information be-
comes available. 
 
     Statistical approaches seek correlations be-
tween environmental conditions and the distri-
bution of disease, while mechanistic ap-
proaches attempt to identify biological proc-
esses that drive the observed patterns (Lawson 
2001).  The observed patchiness of a wildlife 
disease on a landscape could be the product of 
environmental factors that enhance the exis-
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tence or transmission of the disease, or the dis-
tribution and movement patterns of hosts or 
vectors of the disease.  At a landscape level, 
however, other factors that influence this dy-
namic relationship may emerge, such as effects 
of management intervention or localized hu-
man induced risk areas.  Models at a landscape 
scale may allow us to tease out how these fac-
tors interact with the disease to produce the 
observed patterns. 

Cluster analysis is a 
valuable approach for 
identifying disease 

patterns at multiple scales, but is especially 
useful for describing general point patterns 
across a landscape (Wakefield et al. 2000). 
From a decision-making standpoint, clustering 
at the landscape level can help to identify areas 
where disease incidence is higher than might 

be expected by chance alone.  In the regional-
level section, we presented cluster analysis for 
multi- state or providence scales where data are 
likely to have course resolution, or visualiza-
tion at large extents (i.e., multiple states or 
providences) requires a reduction in data accu-
racy and detail.  At a regional scale, cluster 
analysis uses data that are either missing loca-
tion information for a proportion of the data, or 
data are summarized into polygon count or 
prevalence data.  Thus, prevalence, or counts 
of positive and negative cases, could be sum-
marized over areas such as wildlife manage-
ment units.  Here we consider cluster analysis 
for data with higher spatial resolution, such as 
data sets where specific location information 
(e.g., UTM coordinates) are available for most 
of the samples.  For these data, the assignment 
of a case to a cluster is based primarily on its 
coordinates.  Specifically, CWD positive cases 
are placed in clusters based on their relative 
distance to other positive cases while account-

Figure 2.1. Simulated data illustrating the concept of residual spatial variation. Red circles represent 
positive cases and black circles represent negative cases. (A) A density based clustering algorithm that 
does not take into account the negative cases, but is well suited to detecting irregular shapes. (B) A 
spatial scan clustering algorithm which accounts for the underlying structure of the population but 
uses a circular (or elliptical) window to find clusters. The scan method (B) identifies many possible 
clusters (white-shaded circles), but only identifies one as statistically significant (red-shaded circle, p 
= 0.025). The cluster in the upper left was selected as the second most likely cluster, but was not sig-
nificant. 
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ing for distances between negative cases.  Al-
though we discuss cluster analysis at the land-
scape scale, it could also be used at the re-
gional scale if most samples have spatial coor-
dinates.  
 
     In the context of spatial epidemiology, the 
definition of a cluster takes on rather specific 
meaning: 
 
“A spatial aggregation of cases relative to the 
underlying distribution [locations] of non-
cases, with a unique structure which differenti-
ates it from other clusters.” 
 

or 
 
“the residual spatial variation in locations of 
disease (Diggle 2000).” 
 
   The important point is that both definitions 
explicitly take into account the spatial hetero-
geneity of cases relative to non-cases. This 
idea is particularly relevant to the study of 
CWD, where hosts or infectious agent may be 
patchily distributed in space, and data comes 
from a variety of sources (e.g., agency culling, 
hunting, captive cervid operations, etc) that 
also can be patchily distributed. Simple scatter-
plots of locations of CWD samples clearly 
show heterogeneity in the density of samples at 
multiple scales (Farnsworth et al. 2006). Thus, 
a simple clustering of positive cases (ignoring 
non-cases) can be misleading as apparent dis-
ease clusters may be explained simply by a 
clustering in sample collection density and rep-
resent sampling effort rather than disease clus-
tering (Figure 2.1) (Kulldorff and Nagarwalla 
1995). Accordingly, the inference of disease 
“hot-spots” via cluster analysis should only be 
considered when they represent, in Diggle’s 
(2000) words, “the residual spatial variation” 
of positive and negative samples. 
 
     One of the most widely used cluster ap-
proaches for epidemiological data that ac-
counts for the underlying density of non-cases 
is the spatial scan statistic. Developed by Kull-
dorff (1997), it identifies a significant excess 

of cases within a moving window that visits all 
spatial locations, increasing in size at each lo-
cation until it reaches a predetermined upper 
size limit (Figure 2.2). The scan statistic pro-
vides a measure of how unlikely it would be to 
encounter the observed excess of cases in a 
larger comparison region. A more detailed de-
scription of the scan statistic is covered in the 
focal method of this section.  Several varia-
tions of the scan statistic method have been 
applied to a wide variety of epidemiological 
studies for cluster detection including non-
Hodgkin’s lymphoma, child mortality, and bo-
vine TB (Perez et al. 2002, Sankoh et al. 2001, 
Tango and Takahashi 2005, Veil et al. 2000). 

     Clark and Larson (2002) group clusters into 
three classes: spatial clusters, temporal clus-
ters, and spatio-temporal clusters. Purely spa-
tial clusters represent risk that remains constant 
over time. Conversely, temporal clusters exist 

 

Figure 2.2. Shows an example of how the scan 
statistic method works. At each data point the 
algorithm samples the number of members in 
side a set of circle ranging from 0 to a user 
specified maximum limit (either an actual ra-
dius for the circle or a maximum proportion of 
the population). The algorithm then moves on 
to sample the next point in the dataset and con-
tinues this process until all points have been 
sampled. 
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across entire regions, but only for relatively 
brief time periods. Spatio-temporal clusters 
imply a temporary localized region of elevated 
disease within a larger space-time context. For 
example, spatio-temporal clustering methods 
were used to study outbreaks of acute respira-
tory disease in cattle herds in Norway 
(Norstrom et al. 2000). 
 
     For highly transmissible and fast moving 
infectious agents, the incorporation of time is 
often wise. In the case of the CWD, this is 
unlikely to be useful due its relatively slow rate 
of spread. The practical aspects of sample col-
lection also influence the ability to incorporate 
time into a cluster analysis. Sampling often 
occurs in periodic “bursts” of relative short 
periods, such as focal (“hot spot”) culling over 
days, or as annual sustained events such as 
hunting seasons, which occur over days or 
weeks.  Accordingly, we suggest that addition 
of time to a cluster analysis for CWD be re-
stricted to annual periods.  If little spread is 
suspected, data from multiple years can be 
combined for cluster analysis.  To do this, data 
within years (and/or between years) are com-
bined onto a map and considered only as spa-
tial clusters.  Attempts to assess changes in 
prevalence across years should be done care-
fully, as spatial patterns of culling and hunting 
may not be consistent across years. 
 

Questions addressed / model predictions: 
1. Identifies localized disease high prevalence 

areas or “hot spots”. 
2. Identifies spatial disease patterns at differ-

ent scales. 
 
Data required: 
1. Spatial coordinates of positive and negative 

samples if disease cases do not ‘present’ 
themselves – such as for CWD cases. 

2. Random and representative samples. 
3. Covariates (if applicable). 
 
Output: 
1. Assigns positive cases to a particular clus-

ter. 
2. Identifies potential spatial covariates to dis-

ease pattern. 
3. Identifies high-risk areas and cluster maps. 
 
General usefulness: 
     The main strength of cluster analysis is that 
it can be used to depict and describe spatial 
patterns of a disease and identify hot spots of 
high disease prevalence (at which management 
intervention could be targeted), as well as to 
estimate a risk surface.  Cluster analyses are 
exploratory, but can be useful for hypothesis 
generation.  For example, if a risk surface is 
generated, models with environmental/
ecological (abiotic and biotic) covariates, ge-
netic covariates, or other factors suspected to 
be related to the disease, can be evaluated.  
Cluster analysis is a valuable initial step in ex-
amining the spatial epidemiology of a disease. 
 
Usefulness to CWD modeling and/or manage-
ment: 
     Cluster analysis is a valuable descriptive 
tool for CWD surveillance data.  At the land-
scape scale, we recommend that cluster analy-
sis be conducted as a first step for georefer-
enced CWD surveillance data. The usefulness 
of cluster methods for CWD is the same as de-
scribed above in “General usefulness”.  We 
considered the special case of cluster analysis, 
the use of kernel density estimators, to gener-
ate a risk surface, in the regional-level section 
on Risk Analysis/Assessment. 

Geostatistics are sta-
tistics pertaining to 
the earth, or statistical 

techniques that emphasize locations with an 
areal (spatial) distribution.  Geostatistics is 
usually concerned with statistical theory and 
applications for spatial processes which have a 
continuous (or nearly continuous) spatial in-
dex.  In traditional statistical analysis we as-
sume that observations are taken under identi-
cal conditions, and independently from one 
observation to another.  However, with spatial 
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data, the location of each observation gives rise 
to spatial dependence and heterogeneity 
(Cressie 1993).  Spatial autocorrelation meas-
ures the degree of this statistical association 
between data units for different distances, and 
if autocorrelation occurs it becomes important 
to describe the underlying spatial process 
(Diggle et al. 2003).  For diseases, like CWD, 
positive spatial autocorrelation usually indi-
cates areas of either high or low risk.  Negative 
autocorrelation seems unlikely as it implies 
areas of higher disease are adjacent to areas of 
low disease.  Such negative correlation pat-
terns might imply landscape boundaries to dis-
ease spread. 
 
     Geostatistical methods provide an important 
approach for modeling and correcting the spa-
tial autocorrelation that commonly occurs in 
disease data.  The overall goal of a geostatisti-
cal analysis is to assess factors that may be as-
sociated with the occurrence of disease, while 
accounting for spatial dependency.  For exam-
ple, explanatory variables can be incorporated 
in the analysis to account for factors related to 
disease risk (males vs. females), disease expo-
sure (age), or type of disease transmission 
(density-dependent vs. frequency-dependent 
transmission), as well as to evaluate other fac-
tors that might affect disease patterns (animal 
movement and habitat patterns).  These spatial 
regression models take into account both the 
importance of dependent variables and spatial 
dependence.  An advantage of the geostatistical 
approach is that it recognizes both larger scale 
spatial trends and local spatial correlations.  
Most CWD affected areas will have substantial 
small-scale variation, typically exhibiting 
strong positive correlation between data from 
nearby spatial locations.   
 
     The use of geostatistical methods requires 
observations of a response variable (0, 1 for 
CWD infection status) for individual animals 
or summary of prevalence in a small area, and 
the spatial locations of these responses.  Ide-
ally, locations should be truly continuous in 
space, but small scale clustering (summary) of 
data would not likely cause major violations of 

this requirement.  A geostatistical regression 
model looks generally as follows:  Z = Xβ + δ
(d), with fixed effect dependent variables X 
modified by β, and δ(d) is a zero-mean error 
vector that is spatially correlated (a function of 
distance) according the model selected through 
a geostatistical analysis.  In the case of disease, 
the response variable (Z) is typically discrete 
data (binary for disease status or Poisson for 
counts of infected animals).  In particular, lin-
ear models may not always perform well and 
discrete models may be more appropriate for 
disease data.  Some useful process models 
(commonly called link functions) include the 
binary (or logistic) model for CWD status 
(susceptible or infected), the Poisson for CWD 
prevalence data using counts of infected and 
susceptible animals, complementary log-log 
models for estimation of disease prevalence 
using age-prevalence data, and more complex 
hazard rate models (Heisey et al. 2006).   
 
     In geostatistical analysis, spatial variance is 
modeled using a parametric pattern (Cressie 
1993) that best describes the spatial correlation 
(dependency) in the data.  This variance can be 
considered to have both distance and direc-
tional properties, and it is evaluated using the 
variogram (or semi-variogram = variogram/2).  
The variogram is the cornerstone of geostatisti-
cal analysis, and is treated as a random process 
(variable).  The variogram is used to asses the 
degree of variance between spatial locations as 
a function of the distance between locations 
(Figure 2.3). 
 
     The basic structural components of the 
variogram (Figure 2.4) include the parametric 
model’s underlying spatial dependency and the 
estimated model parameters (nugget, sill, and 
range). The nugget measures discontinuity at 
the variogram origin (h=0 or minimum 
variogram lag distance).  Theoretically, we ex-
pect the nugget to have a value of 0 because 
points are perfectly correlated with themselves.  
Actual data often show differences between 
data collected at very close locations in space.  
This variation usually results from random 
variation at scales below the minimum lag dis-
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tance (microscale variation) or from measure-
ment error.  Thus the nugget is an estimate of 
sampling plus microscale variation. Variogram 
patterns (i.e., variance) generally increase with 
lag distances because close points tend to be 
more similar than those located farther apart.  
The lag distance at which the variogram values 
stabilize and the distance beyond which data 
appear to be independent is called the range.  
The final structural component, the sill, repre-

sents the value of the variogram at the range 
and indicates the total amount of correlated 
spatial variation in the dataset. 
 
     When the variogram exhibits different sill 
or range values in different geometric direc-
tions the spatial correlation is a function of 
both distance and direction, and the random 
process is considered to be anisotropic. This is 
usually caused by underlying processes evolv-
ing differently in space or underlying land-
scape features (i.e., valleys, ridges, soil).  If the 
variogram is only a function of distance (i.e. 
the sills will be the same in all directions) it is 
considered to be isotropic.  In the isotropic 
case, the pattern (linear, exponential, quadratic, 
wave, power, etc) of the variogram is used to 
identify and model the underlying spatial de-
pendency in the data.  This model of spatial 
autocorrelation, δ(d), is incorporated with the 
larger process model that accounts for other 
trends or covariate predictors of disease. 
 
      Joly et al. (2006) conducted a geostatistical 
analysis of CWD infection data for south-
central Wisconsin to evaluate both spatial auto-
correlation and ecological factors hypothesized 
to be related to apparent prevalence.  They 
used data to evaluate the potential effects of 

Figure 2.3.  Calculation of the variogram.  All pairs of points separated by lag distance h are identi-
fied (left) . For each pair of points the difference between the values of the points is calculated 
(middle).  For each lag distance the squared differences are summed and divided by twice the number 
of points for that lag distance (right).  The variogram is created by repeating this process at different 
lag distances (e.g. 1h, 2h, 3h, etc.). Adapted from Shibli 1997. 

 

Figure 2.4.  Variogram for an exponential 
model of spatial variation showing the nugget 
(random variation), sill (total variation), and 
range (distance of correlation). Adapted from 
USDA. F.S.— N.E.F.I.A. 
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deer habitat, age, sex, and distance and direc-
tion from a suspected introduction site as fac-
tors affecting CWD prevalence, which was ag-
gregated at the section (i.e., 2.6 km2 or 1 mi2) 
scale.  Their analysis indicated that CWD 
prevalence declined over both a broad scale 
distance from the center of the outbreak area 
and at a scale reflecting local spatial correla-
tion (i.e., 3.2 km or 2 mi radius).  In addition, 
deer habitat was a significant predictor of 
CWD prevalence.  Joly et al. (2006) used the 
resulting regression model to produce a map of 
predicted CWD prevalence.   
 
     Additional complexities may also occur in 
spatial disease data, but these topics are be-
yond the scope of our review.  For example, 
CWD data may be aggregated into a finite col-
lection of regular (e.g., sections, townships) or 
irregular (e.g., counties, wildlife management 
units) spatial sites or cells called lattices.  Fig-
ure 1.3 illustrates the difference between con-
tinuous location of cases (dots) and potential 
aggregation into an irregular lattice of poly-
gons.  Methods for analysis of lattice data is 
described by Cressie (1993) and traditional ap-
plications to human diseases are considered by 
Elliott et al. (2001) and by Lawson and Wil-
liams (2001).   It is also possible to consider 
spatiotemporal analysis, but in most cases this 
is simplified to a purely spatial process by ag-
gregating over time.  Because CWD is typi-
cally a slowly transmitted and slowly spread-
ing disease it seems appropriate to aggregate 
over relatively short time frames (e.g., < 5-10 
years).  The general goal of geostatistical 
analysis is to develop models that incorporate 
disease risk factors and predict CWD infection 
at known spatial locations.    
 
Questions addressed / model predictions: 
1. Evaluates the spatial extent (distance) and 

direction of autocorrelation found in dis-
ease patterns. 

2. Potentially evaluates the relationship of 
biotic and abiotic factors on disease infec-
tion or prevalence. 

 
Data required:   

1. Spatial coordinates of positive and negative 
CWD cases. 

2. Spatial coordinates of polygon centroids if 
CWD cases are aggregated.  However, for 
geostatistical analysis, aggregation should 
occur at a relative small scale compared to 
the area considered in the analysis. 

3. Individual animal covariate data (e.g., age, 
sex) for factors of interest in predicting dis-
ease risk. 

4. Spatial environmental or ecological covari-
ate data (habitat, animal density, risk vari-
ables) for factors of interest in predicting 
disease risk. 

 
Output: 
1. Estimates the spatial autocorrelation of dis-

ease related to distance and/or direction. 
2. Estimates prevalence parameters, covariate 

effect sizes, and other related statistics for 
factors/variables affecting the probability 
of disease. 

3. Potentially depicts CWD spatial prevalence 
based on spatial autocorrelation and other 
significant factors affecting prevalence. 

 
General usefulness: 
     Geostatistical methods are highly useful for 
spatial analysis of ecological and geographic 
processes that are sampled at irregular or ran-
dom locations.  These methods are most useful 
when the goal of the analysis is prediction at 
an unobserved spatial location.  Geostatistical 
methods may be additionally useful when there 
is spatial dependence in the process that gener-
ates spatial patterns.  Additional explanatory 
variables can also be included in the geostatis-
tical analysis, leading to an investigation of 
spatial effects while controlling for explana-
tory factors or vice versa.  Geostatistical meth-
ods generally assume a relatively small error in 
the spatial scale of locating animals (data 
points).  This assumption may be reasonable 
when animals have small home ranges com-
pared to the area of general analysis; however, 
for animals with seasonal migrations it may be 
important to separate analyses based on dis-
tinct summer or winter distributions.  The geo-
relational database structure of a geographic 
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information system (GIS) is ideally suited for 
storing and manipulating data used in geosta-
tistical analyses.   
 
Usefulness to CWD modeling and/or manage-
ment: 
     If relevant spatial data are available, a geo-
statistical analysis has high potential applica-
bility to CWD modeling and management.  
Based on the slow rate of CWD transmission 
and spread, potentially irregular spread of dis-
ease through heterogeneous habitats, and typi-
cally low rates of infection, it seems likely that 
spatial patterns and dependencies will be im-
portant components of CWD spatial distribu-
tion.  Analysis of CWD data using geostatisti-
cal methods can facilitate the evaluation of bi-
otic and abiotic factors affecting the risk of in-
fection while concurrently accounting for 
likely spatial dependence.  Modeling results 
can be used to produce maps of predicted 
CWD prevalence or risk.  In addition, geosta-
tistical analysis may provide useful insights on 
the dynamics of CWD spread by describing the 
extent of spatial correlation on the landscape.  
However, geostatistical methods may not be 
useful for all CWD infected areas.  In particu-
lar, the spatial and temporal scales associated 
with data collection and CWD case location 
should receive careful consideration.  Finally, 
aggregation of CWD data over a number of 
years seems highly likely to improve the distri-
bution and precision of spatial data.  Because 
CWD is a slowly transmitted disease, aggrega-
tion over a few years may not be problematic; 
however, there are currently no specific guide-
lines for determining the appropriate time 
frame for aggregation.  

To understand what 
a cellular automata 
is, consider a chess-

board or checker-board.  The cellular part is 
represented by the squares and each cell can 
have one distinct state, such as color.  Thus, a 
cell could be red or black (2 states), or yellow, 
white, or orange (3 states).  The state must be 

discreet (i.e., an integer value) and finite; thus 
in the color example there would be no con-
tinuous shading and each cell would be one of 
a finite number of possible colors.  For a three-
dimensional problem, the squares would be 
cubes and the analogy would be a Rubik’s 
cube.  For CWD, time could be the third di-
mension so that x and y represent spatial ex-
tent, and z represents temporal pattern.  Now 
we come to the ‘automaton’ part.  As a cellular 
automaton model runs through time, at each 
time interval the state of the cells can change, 
or not, based on a deterministic or probabilistic 
rule.  To enact the rule, each cell looks at the 
states, or color in this example, of nearby cells, 
and its own state (color), and then applies the 
rule to decide its state (color) in the next time 
step.  All the cells change at the same time.  
This collection of cell-states and rule-based 
changes is called a cellular automaton, or cel-
lular automata model.  Two-dimensional sys-
tems of grid-cells are also called lattice-
systems. Cells need not be blocks but can be 
any arbitrary shape.  Although time must be 
discrete, it can be at any interval, from sub-
seconds to years or longer. Even with very 
simple rules for each cell, these models can 
result in complex patterns and dynamics. 
 
     Cellular automaton models have been used 
to study the spatial and temporal rates of dis-
ease spread in spatially distributed host popula-
tions, as well as to evaluate the effectiveness of 
vaccination intervention strategies (Rhodes and 
Anderson 1997).  A probabilistic automata net-
work SIS (susceptible-infective-susceptible) 
model was developed to evaluate the spread of 
an infectious disease in a population of moving 
individuals (Boccara and Cheong 1993).  
When there was high movement, the spatial 
correlations in infection and recovery disap-
pear and, as expected, the behavior of the sys-
tem was then correctly predicted by a mean-
field model, which assumed that every individ-
ual in the population is equally likely to con-
tact every other individual.  Results from the 
mean-field model diverged from the spatial 
cellular automata models when the neighbor-
hood of interacting grid cells was reduced.  At 
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a fine scale, cellular automata models can be 
individual-based models where cells can repre-
sent individuals with a spatial state.  At a lar-
ger-scale, cells could represent populations or 
spatial areas, which would be more appropriate 
for landscape-level modeling. 
 
     Because cellular automaton models are gen-
eral, they can be used to address a huge range 
of questions.  The level of detail, spatial and 
temporal resolution, and inputs and outputs can 
be adapted to the specific questions of interest.  
Because this class of models includes such a 
broad range applications, we do not address 
these categories below. 
 
General usefulness: 
     Cellular automaton models are particularly 
useful for developing an understanding how 
different factors may affect the spatial spread 
and distribution of a disease at a variety of spa-
tial scales.  The main strength of this method is 
its flexibility and the potential simplicity of 
rules within a cell. However, realistic data on 
vital rates, movement, transmission dynamics, 
population structure and distribution, relevant 
environmental/ecological (biotic and abiotic) 
factors, etc. are required to parameterize realis-
tic cellular automaton models.  Cellular 
automaton models are as realistic as the data 
used in their construction.  Still, even with in-
complete data, they may offer heuristic in-
sights into the disease system. 
 
Usefulness to CWD modeling and/or manage-
ment: 
     The cellular automata method is very gen-
eral, and could be used for a variety of differ-
ent purposes.  Given the appropriate data, these 
models could be used to investigate the likeli-
hood of different localities as the point of 
CWD origin.  The usefulness of this approach 
will depend on how a model is constructed and 
whether there is adequate data to parameterize 
it.  However, the cellular automata umbrella 
offers a viable and potentially effective ap-
proach to spatial modeling of CWD to re-
searchers with clear questions and appropriate 
data.  Because of its potential usefulness for 

modeling CWD spatial epidemiology, we pre-
sent a related individual-based model as the 
focal approach for the fine-scale section. 

M e t a p o p u l a t i o n 
models are based on 
the premise that 

there is a set of populations distributed over a 
number of patches, or areas, which are con-
nected by dispersal (Figure 2.5).  Early work 
on the theory of metapopulations assumed that 
dispersal among patches was limited and 
patches would go extinct and/or become re-
colonized over time (Levins 1969, Hanski and 
Gilpin 1991).  A premise of metapopulation 
models is that patches “wink on and off” be-
tween an occupied and unoccupied state.  With 
diseases, this would mean that the disease 
would wink on and off in the populations.  
However, this approach could be adapted for 
diseases that arrive and either do not wink off 
(population unoccupied by disease) or wink off 
very slowly.  Thus, we prefer to think of meta-

Figure 2.5. Different spatial configurations 
and continuity used in metapopulation model-
ing: (A) chain or necklace model, (B) loop 
model, (C) spider model, and (D) island model. 
Lines show connectivity between patches via 
dispersal. 
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population models as part of a continuum of 
spatially (or socially) structured subpopula-
tions.  At one end of the continuum dispersal is 
very rare and subpopulations are relatively in-
dependent of one another.  While at the other 
end of the continuum dispersal is frequent and 
subpopulations are more connected with one 
another.  
 
     Metapopulation models of single species 
are often used to investigate how dispersal and 
subdivision affects spatial and temporal popu-
lation dynamics.  However, these models can 
also be applied to wildlife disease systems 
(Hess 1996, Swinton 1998, Cross et al 2005) 
where patches are then defined as single hosts 

or a group (herd) of hosts, which are colonized 
by the parasite (Hess 1996, Hess et al. 2002).  
Here the ‘patch’ refers to the population 
(group) of susceptible and infected animals 
inhabiting an area that is separate from other 
populations (groups), but connected by disper-
sal or movement.  The probability a population 
is ‘occupied’ by a disease can be modeled fol-
lowing the traditional metapopulation ap-
proaches of site occupancy by a species. 
     Metapopulation models are relevant to 
modeling diseases when there is spatial (or so-
cial) structure in the host population such that 
host vital rates and disease transmission rates 
depend upon local conditions within the popu-
lation (herd).  This is often the case for wildlife 

Figure 2.6. Depiction of infected (I) and susceptible (S) individuals within metapopulations, adapted 
from Hess (1996), and the adaptation of this model to CWD for mule deer.  Traditional metapopula-
tions are connected by dispersal. For mule deer, the mechanism of connection between populations 
may also be due to either migration to summer range combined with summer range overlap or summer 
range expansion and overlap. Case # 1 there is no overlap, and hence is connection or metapopulation 
dynamics  .In case # 2 there is migration to summer range combined with summer range overlap. This 
situation, the product of the probability of migrating × probability of range overlap could represent 
connection between the populations, which is analogous to the dispersal probability in metapopulation 
models. In case #3 there is no migration, but there is range expansion in the summer such that there is 
overlap between the 2 populations.  In this situation, the probability of range overlap could represent 
connection between the populations. Finally, prevalence on winter range can be substituted for the 
numbers of I and S individuals from the metapopulation to adapt the metapopulation disease model of 
Hess (1996) to CWD models. 
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diseases that are directly transmitted because 
hosts are often structured into groups and indi-
viduals are most likely to be infected by others 
within the same group.  These models com-
monly add complexity by explicitly modeling 
dispersal and connections among subpopula-
tions to more realistically model heterogeneous 
mixing between populations, which improves 
prediction of disease spatial spread.  Using 
these models researchers can ask questions 
about the spread of disease from one popula-
tion to the next and the likely effectiveness dif-
ferent management strategies, such as quaran-
tine that may be implemented in some sub-
populations and not others (Figure 2.6). 
 
Questions addressed / model predictions: 
1. Estimates the probability a patch (e.g., 

population, subpopulation, individual, spa-
tial area such as winter range or wildlife 
management unit) becomes infected or re-
covers from infection as a function of 
within and between population dynamics 
and movements. 

2. Facilitates evaluation of management 
strategies that may be implemented spa-
tially (e.g., ring vaccination or depopulat-
ing areas/populations with high preva-
lence). 

 
Data required: 
1. Dispersal or migration routes and prob-

abilities of connection between patches. 
2. For a detailed model, vital rates of popula-

tion dynamics as well as transmission dy-
namics within each patch/population. 

 
Output: 
1. Estimates disease prevalence for each patch 

over time.  
2. Estimates colonization and extinction prob-

abilities of disease infection for each patch. 
3. Estimates the probability that the disease 

goes extinct through time for the entire 
metapopulation. 

 
General usefulness: 
     Metapopulation models could be useful for 
spatially structured populations to evaluate dif-

ferent management strategies, such as quaran-
tine.  This approach is also useful to explicitly 
model between-population or subpopulation 
spread of a disease, as opposed to within-
population spread, which is modeled by many 
spatial epidemiology models. 
 
Usefulness to CWD modeling and/or manage-
ment: 
     One of the difficulties in applying meta-
population models to wildlife populations is 
the problem of defining a subpopulation.  Sub-
populations or herds may vary in size, location 
and the amount dispersal between herds over 
time.  For example, grouping behavior of elk 
and deer in many areas of North America are 
likely to vary between summer and winter 
months (Conner and Miller 2004).  In many 
cases the amount of movement among groups 
and the degree of independence among groups 
is unknown. Metapopulation models may still 
work where there is overlap between subpopu-
lations as long as there is little mixing.  The 
connection between subpopulations, which is 
modeled as dispersal probability in traditional 
metapopulation models, could be modeled by 
probability of exchange or other biological sur-
rogate for connectivity.  Metapopulation mod-
els are less useful for modeling the spatial epi-
demiology of CWD in the more contiguously 
distributed white-tailed deer populations that 
also lack seasonal movements between discrete 
summer and winter areas. 

Diffusion models 
are based on an as-
sumption that the 

process being modeled can be approximated by 
random motion.  The rationale for using a dif-
fusion model is that, although individuals do 
not move randomly, the collective behaviors of 
a large number of individuals cannot be distin-
guished from predictions of a diffusion ap-
proximation (called mean field approxima-
tion).  This assumption vastly simplifies both 
the construction and evaluation of models.  In 
the realm of disease ecology, these models pre-
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dict the spread of disease over time and, as dis-
cussed here, also have a spatial dimension. 
Diffusion models have a rich history in ecol-
ogy and they have been applied to an excep-
tionally wide range of processes, including 
spatial epidemiology of disease (Okubo 1980). 
 
     Because of the underlying assumptions, dif-
fusion models are most often applied to geo-
graphically widespread diseases and when 
transportation of animals or disease agents by 
humans, or dispersal is unimportant.  An early 
application of diffusion theory was Noble’s 
(1974) model for the spread of bubonic plague 
in Europe.  Strict diffusion models may pro-
vide insights to broad-scale processes, espe-
cially as an alternative comparison with more 
complex spatial models.  Recently, Reluga et 
al. (2006) constructed models that combined 
mathematical advantages of a diffusion ap-
proximation while permitting the inclusion of 
spatial structure, including movement of an 
animal within a home range.  
 
     For many diffusion models, the first date an 
infected animal is reported for a given spatial 
area, such as a county or wildlife management 
unit, is the required data.  From this data, a dif-
ferential model or trend surface for rate of 
spread can be retrospectively fit.  In this sec-
tion, we describe 2 potentially useful forms of 
the diffusion model.  The first, a semi-
diffusion model, models disease spread from 
area to area rather than across continuous dif-
ferential space and relaxes the assumption of 
random movement.  The second is trend sur-
face analysis, which is based on date of infec-
tion, and can retrospectively describe the 
spread of a disease in both space and time and 
identify likely corridors or barriers. 

We use the term 
‘semi-di f fus ion’ 
because at a land-

scape scale transmission takes place across 
borders of areas, rather than from a point 
source outward.  Semi-diffusion models may 

allow more realistic modeling of spatial hetero-
geneity in disease spread because they summa-
rize prevalence within area but not across ar-
eas, which requires data at the resolution of the 
area.  In contrast, traditional spatial diffusion 
models attempt to model prevalence as con-
tinuous over space, which requires data at a 
fine resolution.  Semi-diffusion models can be 
constructed for the spatial scale at which man-
agement is enacted.  For example, wildlife dis-
eases are often monitored by wildlife manage-
ment units, and increased harvest or other man-
agement intervention actions are enacted for 
wildlife management units.  With a semi-
diffusion model, disease spread would be mod-
eled across wildlife management units.  The 
rate of diffusion or spread from one area to the 
other can be modeled as a function of preva-
lence in adjacent areas, proportion of border 
shared with infected areas, amount of connec-
tion via migration and dispersal, number of 
feeding sites in the area, etc.  The diffusion rate 
could also be modeled as a function of any 
spatial environmental/ecological (biotic or 
abiotic) factors.  A fundamental aspect of a 
semi-diffusion approach is explicit modeling 
of spatial dynamics (e.g., proportion of adja-
cent areas infected, prevalence in adjacent ar-
eas, etc.) in the difference equations, rather 
then modeling the effect through correlation 
structure.  This approach could be framed as a 
model selection problem, with models repre-
senting different hypotheses about the spatial 
spread of the disease.  Semi-diffusion model-
ing could be developed into a viable approach 
for any disease for which cases do not present 
themselves but where surveillance samples of 
infected and non-infected animals are col-
lected. 
 
Questions addressed / model predictions: 
1. Estimates the probability an area becomes 

infected as a function of observed patterns, 
management actions, or environmental/
ecological (biotic and abiotic) variables. 

2. Predicts future spread of a disease from 
area to area. 

 
Data required: 
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1. Date of first infection for a given spatial 
area, such as a wildlife management unit 
(date first detected is not the same as date 
of first infected, but if the two are close 
then date of first detected can be used for 
date of first infected). 

2. Proportion of adjacent spatial areas that are 
infected for each time step. 

3. Proportion of shared borders. 
4. Prevalence within each area at each time 

step. 
5. Proximity of spatial area to geographic fea-

tures that could influence rate of spread, 
such as rivers (barriers or corridors), major 
highways (possible barriers), high ridge-
lines (possible barriers), etc. 

6. Covariates for a spatial area expected to 
influence rate of spread, such as human 
density, animal density, disease prevalence, 
or environmental/ecological (abiotic and 
biotic) variables. 

 
Output: 
1. Predicts the probability an area will be-

come infected at a given time step. 
2. Estimates spatial and temporal prevalence 

of each spatial area at each time step. 
3. Predicts rate of spread across entire study 

area. 
4. Can provide estimates of covariate effects. 
 
General usefulness: 
     Semi-diffusion models could be quite useful 
for diseases that do not present themselves, and 
it could be useful for fast or slowly spreading 
diseases.  It would also facilitate evaluation of 
the importance of environmental/ecological 
(abiotic and biotic) factors in the spread of a 
disease.  The main disadvantage of this method 
is that it requires several years of adequate 
(i.e., enough samples to have a high probability 
of detecting the disease if it is present) surveil-
lance samples from contiguous areas included 
in the model. 
 
Usefulness to CWD modeling and/or manage-
ment: 
     Data collected for CWD surveillance is 
typically of the type required for a semi-

diffusion model, making this approach poten-
tially viable.  Running this type of diffusion 
model backwards in time may help researchers 
and managers generate hypotheses about the 
factors important to CWD spread and potential 
originating areas.  Thus, a semi-diffusion 
model may provide heuristic insight to under-
standing the present spatial patterns of CWD.  
However, a semi-diffusion approach has lim-
ited potential for predicting the probability of 
spread of CWD into uninfected areas.  The 
problem is that to generate a good model from 
which to predict from, we would have to know 
how the disease spread.  Because most new 
cases of CWD have not initiated from spread 
of the disease, but rather from increased sur-
veillance of an area, there are very limited data 
on the temporal aspect of spread, and this tem-
poral aspect is an essential element of this 
method or any diffusion method.  Thus, we 
conclude this method is not useful for CWD 
modeling at the present, but may be in the fu-
ture. 

Trend surface analy-
sis uses spatial poly-
nomial models that 

accounts for global effects and local autocorre-
lation.  Models are fit using least-squares re-
gression, except that residual autocorrelation is 
included in the model.  For this discussion 
based on Figure 2.6, we use months as the time 
interval and counties as the spatial areas of in-
terest.  A trend surface estimates contours for 
the number of months to the first reported case 
(Figure 2.6) using the centroid coordinates of 
wildlife management units or other relevant 
management area (Moore 1999). From these 
contour lines, partial differential equations 
(∂time/∂x, ∂time/∂y) are derived to estimate 
the slope vectors from contour to contour.  
These slope vectors represent the rate of spread 
across the landscape.  Large slopes represent 
high rates of spread which are interpreted as 
corridors.  Similarly, areas with low rates of 
spread are interpreted as barriers (Figure 2.7). 
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Questions addressed / model predictions: 
1. Estimates the rate of spread as a function of 

date that an area was first infected. 
2. Identifies areas with fast and slow spread. 
 
Data required: 
1. Date of first infection for a given spatial 

area, such as a wildlife management unit 
(date first detected is not the same as date 
of first infected, but if the two are close 
then date of first detected can be used for 
date of first infected). 

2. Centroid coordinates of the spatial areas. 
 
Output: 
1. Predicts contours of months to first re-

ported case of disease. 
2. Estimates rate of disease spread. 
 
General usefulness: 
     Trend surface analysis is useful for infec-
tious, moderate to quickly spreading epidemics 
in which cases present themselves.  It is 
unlikely that the “first” case will be identified 
in an area, particularly in wildlife disease sys-
tems.  Thus the rate of spread will be underes-
timated.  However, as long as the time at 
which ‘first’ cases are identified is not biased 
by area (e.g., bias could arise if cases near ur-

ban areas are identified more quickly than 
cases in remote areas), trend surface analysis is 
usable for determining corridors of rapid 
spread and barrier areas which slow spread.  
Assigning areas to contain urban and remote 
areas could be important to avoid bias (e.g., 
incorrectly estimating spread to be fast around 
areas where there is a bias toward quick detec-
tion of the disease).  However, this issue will 
be problematic when detection probabilities 
vary over space and time, which is likely for 
CWD. 
 
Usefulness to CWD modeling and/or manage-
ment: 
     Trend surface analysis is probably not use-
ful for most CWD data sets because the date 
that an infected animal is first reported in an 
area may be completely unrelated to the date 
when the disease first occurred in the area.  We 
note that the reason this method is not applica-
ble is because of CWD surveillance and detec-
tion issues and not with the inherent usefulness 
of the method for CWD epidemiology. That is, 
if surveillance data were colleted randomly and 
representatively over the entire state or area of 
interest, trend surface analysis could work well 
for CWD. 
 

Figure 2.7.  (A ) The predicted trend surface for month to the first report of a raccoon rabies case of 
disease outbreak by county, Pennsylvania, USA, 1982-1996. This figure illustrates the general direc-
tion and movement of the diffusion process originating in the county shaded in yellow. The contours 
represent the predicted number of months to the first reported case.  (B) Velocity vectors (derived from 
the partial differential equations from the trend surface) show the speed and direction of diffusion at 
each county centroid. Longer arrows represent faster spread.  Adapted from Moore 1999. 
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     We selected cluster analysis as the focal 
approach for landscape level methods. While 
cluster analysis may not be as complicated or 
elegant as other approaches in this section, pat-
tern detection with clustering remains a key 
element for both hypothesis formation and de-
cision-making processes (Jain et al. 1999). 
State- or providence-wide surveillance pro-
grams, especially those involving hunter har-
vested animals (i.e., hunter harvest check sta-
tions) can provide large amounts of data (e.g., 
>25,000 samples) in a relatively short period of 
time (e.g., 1-4 months). Such a large influx of 
data often creates confusion and cluster analy-
sis provides a convenient ‘entry-point’ into 
such a complex dataset. Further support for the 
use of clustering comes from situations where 
little prior information exists about the data 
(e.g., when starting a surveillance program, or 
monitoring new areas). In such cases it is pru-
dent to begin with an exploratory analysis that 
makes as few assumptions about the data as 
possible - cluster analysis excels in this situa-
tion. 
 

     We selected Kulldorff’s (1997) spatial scan 
statistic for our clustering algorithm as it re-
quires fewer a priori parameters (e.g., the 
number of total clusters or the number of indi-
viduals in a cluster) than most clustering meth-
ods. It has also been shown through power 
comparisons to be the most powerful method 
for detecting localized clusters (Tango and Ta-
kahashi 2005) and has been used to identify 
areas of high CWD prevalence from surveil-
lance data on white-tailed deer (Joly et al. 
2006).   
 
     Scan statistics work by moving a window of 
variable size across the points in a dataset, 
counting the number of observed and expected 
cases falling within the windows (see Figure 
2.2). The most likely cluster of high prevalence 
(i.e., not occurring by chance) is determined 
using a maximum likelihood ratio statistic, 
which determines whether there is higher 
prevalence inside the window compared with 
outside. By maximizing the likelihood function 
over all locations and window sizes the most 
likely cluster is identified. Cluster specific p-
values are obtained using Monte Carlo simula-
tions for primary and secondary clusters. Scan 
statistics are appropriate for detecting clusters 

Figure 2.8.  Partitioning of a 
dataset for Bernoulli analysis in 
program SaTScanTM. The origi-
nal data array contains a 
unique identifier, spatial refer-
ences (x/y) and disease status. 
This dataset is split into three 
individual files: 
 
1. A vector of ID  numbers for 

positive cases (red arrow). 
2. A vector of ID  numbers for 

negative cases (black) ar-
row. 

3. A coordinate array contain-
ing all records.  
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in space, time, or space-time, however we 
chose to demonstrate the method in the spatial 
dimension only.  The following analysis was 
performed using the program SaTScanTM 
(Kulldorff 2006), which is available for free 
from http://www.satscan.org/. 
 
Step #1: Data structure 
     Our example assumes that we are interested 
in detecting clusters of high prevalence of 
CWD by using disease status of individual ani-
mals, and therefore makes use of Bernoulli 
model framework. This type of model in 
SaTScanTM requires the spatial location of ani-
mals (x/y coordinates) and their status (0 for 
CWD negative, 1 for CWD positive). The 
SaTScanTM software requires partitioning of a 
dataset into three separate files; a positive case 
file, a negative case file, and a coordinate file 
covering all points. The positive and negative 
data files are simply a list of the respective 
unique identifiers. The coordinate file is linked 
to the two other files by the unique identifier 
field (Figure 2.8). 
 
Step #2: Spatial scan & output data 
      We used two simulated data sets, each con-
sisting of 1000 sampled individuals, to high-
light the important aspects of the spatial scan 
statistic.  The first dataset has a 10% preva-
lence rate randomly distributed across a theo-
retical landscape (Figure 2.9).  
 
      Three tabs are available (INPUT, ANALY-
SIS, OUTPUT) for the user to specify the 
model. For the Bernoulli approach we only 
need to specify the upper limit of the window 
size. This can either be set as a percentage of 
the population (both positive and negative 
events) or as the radius of the circle. For our 
analysis we used the default of 50% of the 
population. That is, the scan window will in-
crease from 0 to a size that contains 50% of the 
population (i.e., 500 individuals) for each point 
it searches. With very large data sets searching 
50% of the population for each point can take 
substantial time and we suggest setting the up-
per limit as a fixed radius rather than percent-
age of the population. The SaTScanTM output 

provides various options to facilitate integra-
tion with a GIS mapping environment. This 
allows for visual mapping of the most likely 
clusters selected from a particular analysis. 
 
     It is important to remember that almost all 
clustering methods will produce clusters (that’s 
their job!), even if they are not biologically 
relevant. To prevent such “false clustering” the 
spatial scan statistic tests if the pattern of posi-
tives and negatives inside any potential cluster 
is significantly different from the pattern ob-
served outside that cluster. For our purely ran-
dom 10% prevalence dataset, the Bernoulli 
spatial scan results show that even the most 
likely cluster is nonsignificant (p = 0.636) 
(Figure 2.10).  We can infer there is no signifi-
cant clustering of prevalence in this dataset. 
 
     To highlight the scan statistic’s ability of 
detecting true clusters of higher prevalence 
from clusters caused by increased sampling 
intensity, we simulated a second dataset.  This 
dataset contains an area of high prevalence and 
a second distinct area of dense monitoring 
(many positives coupled with many negatives) 

Figure 2.9.  Randomly distributed 10% preva-
lence data. Red dots indicate positive cases 
(n=100), gray dots are negative cases 
(n=900).  
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(Figure 2.11). Distinguishing between these 
two potential clusters represents the usual 
situation where simple spatial clustering often 
fails (by not accounting for the negative 
points).   Simulating an area of dense monitor-
ing is also relevant to CWD monitoring, be-
cause surveillance effort often varies across a 
landscape. 
 
     The scan statistic correctly identified the 
high prevalence area as significantly different 

from the surrounding population (p = 0.001).  
The increased sampling area was identified as 
a secondary cluster, but this cluster was not 
statistically significant. Accordingly, we can 
conclude that this cluster of positives is not 
significantly different from the surrounding 
population. It is simply the manifestation of a 
higher density of samples (both positive and 
negative) (Figure 2.12). 

     As at the regional scale, we recommend 
cluster analysis as the first step of describing 
CWD patterns.  Although there are many ap-
proaches to mechanistically modeling the spa-
tial epidemiology of disease at this scale, their 
utility in the context of CWD is limited by sev-
eral factors.  The most important factor is lack 
of data.  That is, we cannot reliably predict the 
spatial spread of CWD because sampling is 
usually insufficient to determine whether the 
disease is absent from some areas, or present 
but not detected. Diffusion models are inappro-

Figure 2.11. Clustered 10% prevalence data 
with high prevalence and dense monitoring 
regions. Red dots indicate positive cases 
(n=100), gray dots are negative cases 
(n=900).  
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priate for additional reasons.  For example, dif-
fusion models are typically predicated on ran-
dom mixing of individuals and, for some mod-
els, on the fact that the date associated with the 
first infected sample in an area represents the 
first occurrence of the disease in the area.  The 

random mixing assumption can be relaxed if 
factors causing differences in the rate of spread 
are explicitly included in the model.  However, 
the second assumption is more problematic for 
CWD.  The date when CWD is first detected in 
a new area usually does not represent a first 
infection, but rather a first detection.  Diffusion 
methods typically assume that disease cases 
“present themselves” because they were devel-
oped for human diseases, where sick humans 
“present” themselves to doctors for treatment.  
However, deer with CWD rarely present them-
selves for testing.  Thus, when we detect CWD 
for the first time in an area it likely that the dis-
ease was already there, perhaps for some time, 
but the area was not adequately sampled.  
Thus, until all areas are adequately sampled, 
surveillance data cannot be used in diffusion 
methods to model the spread of CWD in a 
meaningful way. 
 
     In addition, due to the apparently slow spa-
tial spread of CWD, we believe that diffusion, 
cellular automata, and metapopulation models 
are unlikely to be particularly useful for ad-
dressing many CWD questions.  In particular, 
we expect that the ecological system could 
change dramatically (e.g., hunting pressure, 
land use, water distributions, animal transloca-
tions [legal or otherwise], etc.) over the 
amount of time that it is likely to take CWD to 
spread, and that these factors might play a 
much larger role than the diffusion process.  
We have one caveat to our skepticism.  If sur-
veillance data over larger areas are adequately 
sampled, the semi-diffusion approach may be 
useful for predicting potential spread, or to 
evaluate management actions occurring at an 
appropriate scale, such as county or wildlife 
management unit.  However, given that CWD 
appears to spread slowly, even if the semi-
diffusion approach is viable it may not yield 
helpful results.  That is, it may be years before 
CWD is predicted to move from populations in 
one large area to populations in another large 
area.  
 
     The largest data gap at the landscape scale 
is the lack of adequate sampling to detect 
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newly infected areas.  Enough samples to en-
sure a 99% probability of detecting a preva-
lence of <1% should to be collected over all 
areas of interest in order to predict any future 
spread of CWD.  Sample sizes and designs to 
achieve this were thoroughly discussed in the 
previous workshop (Samuel et al. 2003).  Be-
cause of inadequate samples, the first time 
CWD is detected in an area often represents 
the first time there are adequate samples and 
power to detect low prevalence CWD, not the 
first time it occurs or “spread” there.  Model-
ing spread of disease based on observed pat-
terns will not be valid until there are adequate 
samples in the relevant study areas. 
 
     In areas where sampling is powerful enough 
to describe present spatial patterns of CWD 
epidemiology, running models backwards in 
time may be a fruitful line of future investiga-
tion.  This approach could reveal likely origi-
nating locations and times, as well as potential 
patterns of spread, that led to present patterns. 
Hypotheses of originating locations, times, and 
patterns of spread, including corridors and bar-
riers, could be constructed.  The forward pro-
jection of the outcomes of these hypotheses 
could be compared to the observed patterns via 
model fit statistics.  The endemic area of Colo-
rado and Wyoming may be an area with ade-
quate samples to attempt a backwards time ap-
proach. 
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	across entire regions, but only for relatively brief time periods. Spatio-temporal clusters imply a temporary localized region of elevated disease within a larger space-time context. For example, spatio-temporal clustering methods were used to study outbreaks of acute respiratory disease in cattle herds in Norway (Norstrom et al. 2000).
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